Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Vet Res ; 55(1): 46, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589976

RESUMO

Pasteurella multocida is an important zoonotic respiratory pathogen capable of infecting a diverse range of hosts, including humans, farm animals, and wild animals. However, the precise mechanisms by which P. multocida compromises the pulmonary integrity of mammals and subsequently induces systemic infection remain largely unexplored. In this study, based on mouse and rabbit models, we found that P. multocida causes not only lung damage but also bacteremia due to the loss of lung integrity. Furthermore, we demonstrated that bacteremia is an important aspect of P. multocida pathogenesis, as evidenced by the observed multiorgan damage and systemic inflammation, and ultimately found that this systemic infection leads to a cytokine storm that can be mitigated by IL-6-neutralizing antibodies. As a result, we divided the pathogenesis of P. multocida into two phases: the pulmonary infection phase and the systemic infection phase. Based on unbiased RNA-seq data, we discovered that P. multocida-induced apoptosis leads to the loss of pulmonary epithelial integrity. These findings have been validated in both TC-1 murine lung epithelial cells and the lungs of model mice. Conversely, the administration of Ac-DEVD-CHO, an apoptosis inhibitor, effectively restored pulmonary epithelial integrity, significantly mitigated lung damage, inhibited bacteremia, attenuated the cytokine storm, and reduced mortality in mouse models. At the molecular level, we demonstrated that the FAK-AKT-FOXO1 axis is involved in P. multocida-induced lung epithelial cell apoptosis in both cells and animals. Thus, our research provides crucial information with regard to the pathogenesis of P. multocida as well as potential treatment options for this and other respiratory bacterial diseases.


Assuntos
Bacteriemia , Infecções por Pasteurella , Pasteurella multocida , Doenças dos Roedores , Humanos , Animais , Coelhos , Camundongos , Infecções por Pasteurella/veterinária , Infecções por Pasteurella/microbiologia , Proteínas Proto-Oncogênicas c-akt , Síndrome da Liberação de Citocina/patologia , Síndrome da Liberação de Citocina/veterinária , Pulmão/patologia , Bacteriemia/veterinária , Bacteriemia/patologia , Apoptose , Mamíferos , Proteína Forkhead Box O1
2.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1327-1334, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621980

RESUMO

This study aims to investigate whether baicalin induces ferroptosis in HepG2 cells and decipher the underlying mechanisms based on network pharmacology and cell experiments. HepG2 cells were cultured in vitro and the cell viability was detected by the cell counting kit-8(CCK-8). The transcriptome data of hepatocellular carcinoma were obtained from the Cancer Genome Atlas(TCGA), and the ferroptosis gene data from FerrDb V2. The DEG2 package was used to screen the differentially expressed genes(DEGs), and the common genes between DEGs and ferroptosis genes were selected as the target genes that mediate ferroptosis to regulate hepatocellular carcinoma progression. The functions and structures of the target genes were analyzed by Gene Ontology(GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment with the thresholds of P<0.05 and |log_2(fold change)|>0.5. DCFH-DA probe was used to detect the changes in the levels of cellular reactive oxygen species(ROS) in each group. The reduced glutathione(GSH) assay kit was used to measure the cellular GSH level, and Fe~(2+) assay kit to determine the Fe~(2+) level. Real-time quantitative PCR(RT-PCR) was employed to measure the mRNA levels of glutathione peroxidase 4(GPX4) and solute carrier family 7 member 11(SLC7A11) in each group. Western blot was employed to determine the protein levels of GPX4, SLC7A11, phosphatidylinositol 3-kinase(PI3K), p-PI3K, protein kinase B(Akt), p-Akt, forkhead box protein O3a(FoxO3a), and p-FoxO3a in each group. The results showed that treatment with 200 µmol·L~(-1) baicalin for 48 h significantly inhibited the viability of HepG2 cells. Ferroptosis in hepatocellular carcinoma could be regulated via the PI3K/Akt signaling pathway. The cell experiments showed that baicalin down-regulated the expression of SLC7A11 and GPX4, lowered the GSH level, and increased ROS accumulation and Fe~(2+) production in HepG2 cells. However, ferrostatin-1, an ferroptosis inhibitor, reduced baicalin-induced ROS accumulation, up-regulated the expression of SLC7A11 and GPX4, elevated the GSH level, and decreased PI3K, Akt, and FoxO3a phosphorylation. In summary, baicalin can induce ferroptosis in HepG2 cells by inhibiting the ROS-mediated PI3K/Akt/FoxO3a pathway.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Flavonoides , Neoplasias Hepáticas , Humanos , Proteínas Proto-Oncogênicas c-akt/genética , Fosfatidilinositol 3-Quinases/genética , Espécies Reativas de Oxigênio , Células Hep G2 , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Transdução de Sinais
3.
BMC Cancer ; 24(1): 408, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566039

RESUMO

BACKGROUND: Accumulating evidence indicates that aberrant non-SMC condensin II complex subunit D3 (NCAPD3) is associated with carcinogenesis of various cancers. Nevertheless, the biological role of NCAPD3 in the pathogenesis of non-small cell lung cancer (NSCLC) remains unclear. METHODS: Immunohistochemistry and Western blot were performed to assess NCAPD3 expression in NSCLC tissues and cell lines. The ability of cell proliferation, invasion, and migration was evaluated by CCK-8 assays, EdU assays, Transwell assays, and scratch wound healing assays. Flow cytometry was performed to verify the cell cycle and apoptosis. RNA-sequence and rescue experiment were performed to reveal the underlying mechanisms. RESULTS: The results showed that the expression of NCAPD3 was significantly elevated in NSCLC tissues. High NCAPD3 expression in NSCLC patients was substantially associated with a worse prognosis. Functionally, knockdown of NCAPD3 resulted in cell apoptosis and cell cycle arrest in NSCLC cells as well as a significant inhibition of proliferation, invasion, and migration. Furthermore, RNA-sequencing analysis suggested that NCAPD3 contributes to NSCLC carcinogenesis by regulating PI3K/Akt/FOXO4 pathway. Insulin-like growth factors-1 (IGF-1), an activator of PI3K/Akt signaling pathway, could reverse NCAPD3 silence-mediated proliferation inhibition and apoptosis in NSCLC cells. CONCLUSION: NCAPD3 suppresses apoptosis and promotes cell proliferation via the PI3K/Akt/FOXO4 signaling pathway, suggesting a potential use for NCAPD3 inhibitors as NSCLC therapeutics.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica , Neoplasias Pulmonares/patologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA
4.
J Transl Med ; 22(1): 350, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609979

RESUMO

BACKGROUND: Olfactory dysfunction occurs frequently in Parkinson's disease (PD). In this study, we aimed to explore the potential biomarkers and underlying molecular pathways of nicotine for the treatment of olfactory dysfunction in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced PD mice. METHODS: MPTP was introduced into C57BL/6 male mice to generate a PD model. Regarding in vivo experiments, we performed behavioral tests to estimate the protective effects of nicotine in MPTP-induced PD mice. RNA sequencing and traditional molecular methods were used to identify molecules, pathways, and biological processes in the olfactory bulb of PD mouse models. Then, in vitro experiments were conducted to evaluate whether nicotine can activate the prok2R/Akt/FoxO3a signaling pathway in both HEK293T cell lines and primary olfactory neurons treated with 1-methyl-4-phenylpyridinium (MPP+). Next, prok2R overexpression (prok2R+) and knockdown (prok2R-) were introduced with lentivirus, and the Akt/FoxO3a signaling pathway was further explored. Finally, the damaging effects of MPP+ were evaluated in prok2R overexpression (prok2R+) HEK293T cell lines. RESULTS: Nicotine intervention significantly alleviated olfactory and motor dysfunctions in mice with PD. The prok2R/Akt/FoxO3a signaling pathway was activated after nicotine treatment. Consequently, apoptosis of olfactory sensory neurons was significantly reduced. Furthermore, prok2R+ and prok2R- HEK293T cell lines exhibited upregulation and downregulation of the Akt/FoxO3a signaling pathway, respectively. Additionally, prok2R+ HEK293T cells were resistant to MPP+-induced apoptosis. CONCLUSIONS: This study showed the effectiveness and underlying mechanisms of nicotine in improving hyposmia in PD mice. These improvements were correlated with reduced apoptosis of olfactory sensory neurons via activated prok2R/Akt/FoxO3a axis. These results explained the potential protective functions of nicotine in PD patients.


Assuntos
Transtornos do Olfato , Doença de Parkinson , Humanos , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células HEK293 , Nicotina/farmacologia , Doença de Parkinson/complicações , Proteínas Proto-Oncogênicas c-akt , Transtornos do Olfato/complicações , Transtornos do Olfato/tratamento farmacológico
5.
Cell Stress Chaperones ; 29(2): 272-284, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485044

RESUMO

Long-term hyperglycemia can lead to diabetic cardiomyopathy (DCM), a main lethal complication of diabetes. However, the mechanisms underlying DCM development have not been fully elucidated. Heat shock protein A12A (HSPA12A) is the atypic member of the Heat shock 70kDa protein family. In the present study, we found that the expression of HSPA12A was upregulated in the hearts of mice with streptozotocin-induced diabetes, while ablation of HSPA12A improved cardiac systolic and diastolic dysfunction and increased cumulative survival of diabetic mice. An increased expression of HSPA12A was also found in H9c2 cardiac cells following treatment with high glucose (HG), while overexpression of HSPA12A-enhanced the HG-induced cardiac cell death, as reflected by higher levels of propidium iodide cells, lactate dehydrogenase leakage, and caspase 3 cleavage. Moreover, the HG-induced increase of oxidative stress, as indicated by dihydroethidium staining, was exaggerated by HSPA12A overexpression. Further studies demonstrated that the HG-induced increases of protein kinase B and forkhead box transcription factors 1 phosphorylation were diminished by HSPA12A overexpression, while pharmacologically inhibition of protein kinase B further enhanced the HG-induced lactate dehydrogenase leakage in HSPA12A overexpressed cardiac cells. Together, the results suggest that hyperglycemia upregulated HSPA12A expression in cardiac cells, by which induced cell death to promote DCM development. Targeting HSPA12A may serve as a potential approach for DCM management.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Hiperglicemia , Camundongos , Animais , Proteínas de Choque Térmico/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatias Diabéticas/complicações , Cardiomiopatias Diabéticas/metabolismo , Hiperglicemia/complicações , Hiperglicemia/metabolismo , Lactato Desidrogenases/metabolismo , Miócitos Cardíacos/metabolismo
6.
Dev Biol ; 511: 1-11, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38548146

RESUMO

Maintenance of appropriate muscle mass is crucial for physical activity and metabolism. Aging and various pathological conditions can cause sarcopenia, a condition characterized by muscle mass decline. Although sarcopenia has been actively studied, the mechanisms underlying muscle atrophy are not well understood. Thus, we aimed to investigate the role of Phosphatidylserine synthase (Pss) in muscle development and homeostasis in Drosophila. The results showed that muscle-specific Pss knockdown decreased exercise capacity and produced sarcopenic phenotypes. In addition, it increased the apoptosis rate because of the elevated reactive oxygen species production resulting from mitochondrial dysfunction. Moreover, the autophagy rate increased due to increased FoxO activity caused by reduced Akt activity. Collectively, these findings demonstrate that enhanced apoptosis and autophagy rates resulting from muscle-specific Pss knockdown jointly contribute to sarcopenia development, highlighting the key role of the PSS pathway in muscle health.

7.
Stem Cells ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427800

RESUMO

Cellular senescence significantly affects the proliferative and differentiation capacities of mesenchymal stem cells (MSCs). Identifying key regulators of senescence and exploring potential intervention strategies, including drug-based approaches, are active areas of research. In this context, S-adenosyl-L-methionine (SAM), a critical intermediate in sulfur amino acid metabolism, emerges as a promising candidate for mitigating MSC senescence. In a hydrogen peroxide-induced MSC aging model (100µM for 2h), SAM (50µM and 100µM) was revealed to alleviate the senescence of MSCs, and also attenuated the level of ROS and enhanced the adipogenic and osteogenic differentiation in senescent MSCs. In a premature aging mouse model (subcutaneously injected with 150 mg/kg/d D-galactose in the neck and back for 7 weeks), SAM (30 mg/kg/d by gavage for 5 weeks) was shown to delay the overall aging process while increasing the number and thickness of bone trabeculae in the distal femur. Mechanistically, activation of PI3K/AKT signaling and increased phosphorylation of FOXO3a was proved to be associated with the anti-senescence role of SAM. These findings highlight that the PI3K/AKT/FOXO3a axis in MSCs could play a crucial role in MSCs senescence and suggest that SAM may be a potential therapeutic drug for MSCs senescence and related diseases.

8.
Mol Carcinog ; 63(5): 951-961, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38362840

RESUMO

Empty spiracles homeobox 2 (EMX2) is initially identified as a key transcription factor that plays an essential role in the regulation of neuronal development and some brain disorders. Recently, several studies emphasized that EMX2 could as a tumor suppressor, but its role in human clear cell renal cell carcinoma (ccRCC) remains unclear. In the present study, we investigated the role and underlying mechanism of EMX2 in the regulation of ccRCC progress. Our results demonstrated that EMX2 expression was markedly decreased in ccRCC tissues and cell lines, and low EMX2 expression predicted the poor prognosis of ccRCC patients. In addition, forced expression of EMX2 significantly inhibited the cell growth, migration, and invasion in vitro, as well as ccRCC tumor growth in nude mice, via, at least in part, regulating Akt/FOXO3a pathway. In detail, EMX2 could attenuate the phosphorylation levels of Akt and FOXO3a, and increase FOXO3a expression without affecting total Akt expression in vivo and in vitro. Meanwhile, shRNA-mediated knockdown of FOXO3a expression could obviously attenuate the effects of EMX2 on cell growth, migration, invasion, and tumor growth. Furthermore, EMX2 could significantly attenuate the interaction between Akt and FOXO3a. Taken together, our results demonstrated that EMX2 could inhibit ccRCC progress through, at least in part, modulating Akt/FOXO3a signaling pathway, thus representing a novel role and underlying mechanism of EMX2 in the regulation of ccRCC progress.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Camundongos , Humanos , Carcinoma de Células Renais/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos Nus , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Renais/patologia , Regulação Neoplásica da Expressão Gênica
9.
Chem Biol Drug Des ; 103(2): e14476, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38346772

RESUMO

Bladder cancer (BLCA), a common primary malignancy, exhibits resistance to conventional chemotherapeutic agents. Sophoridine (SR) is a quinoline alkaloid derived from the traditional Chinese herb Sophora alopecuroides L., which belongs to the legume family Sophoraceae. SR is reported to exert growth-inhibitory effects against several cancers. However, the mechanisms underlying the growth-inhibitory effects of SR on BLCA have not been elucidated. This study performed molecular and cellular experiments to verify the growth-inhibitory effects of SR on BLCA and the underlying mechanisms. SR inhibited cell proliferation and promoted apoptosis and G1-phase arrest through the PI3K/AKT/FoxO3a signaling pathway. More interestingly, the effects of SR can be attributed to the accumulation of reactive oxygen species (ROS) in vivo. ROS may be the upstream factor of this pathway. Additionally, SR inhibited the migration and invasion of BLCA cells in a concentration-dependent or time-dependent manner. This is the first study to demonstrate the ROS-dependent PI3K/AKT/FoxO3a pathway-mediated anticancer effect of SR and the anticancer mechanism of SR in BLCA. The correlation between SR-induced ROS-dependent cell proliferation inhibition, apoptosis, cell cycle arrest, and PI3K/AKT/FoxO3a suggests that SR is a promising novel therapeutic for BLCA.


Assuntos
Antineoplásicos , Neoplasias da Bexiga Urinária , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Matrinas , Farmacologia em Rede , Linhagem Celular Tumoral , Apoptose , Antineoplásicos/farmacologia , Proliferação de Células , Neoplasias da Bexiga Urinária/tratamento farmacológico
10.
Curr Med Chem ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38357946

RESUMO

BACKGROUND AND OBJECTIVES: Hesperetin (HSE) is a natural flavonoid derived from the hydrolysis of Hesperidin, which is mainly found in traditional natural Chinese herbs, such as Chenpi and Hovenia caryophyllus. HSE displays anti-inflammatory and antioxidant activities. However, its potential mechanism of action on bladder cancer (BLCA) remains unknown. The aim of this study was to investigate the potential mechanism of action of HSE on BLCA cells. METHODS: Network pharmacology analysis was used to construct a composite target network, combined with Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to identify HSE-induced cell death patterns and signaling pathway alterations. Cytotoxicity evaluation was determined by CCK-8 assay. A clone formation assay was performed to assess cell proliferative capacity. Scratch and Transwell assays were performed to evaluate cell migration and invasion ability. Hoechst 33342 staining was visualized to observe morphological features of apoptosis. Apoptosis, cycle distribution, reactive oxygen species (ROS) generation, and mitochondrial membrane potential (MMP) changes were examined by flow cytometry. Western blot analysis was performed to analyze the expression of key proteins associated with cell proliferation, apoptosis, cycle block, PI3K/AKT/FoxO3a and endoplasmic reticulum (ER) stress-mitochondrial pathways. RESULTS: Network pharmacology analysis was performed to identify 155 potential candidate targets of HSE-BLCA, and further topological analysis was performed to obtain 34 hub-gene. Enrichment analysis yielded patterns of death and key pathways, revealing that the anti-BLCA effect of HSE may be related to the positive regulation of PI3K/AKT/FoxO3a and ER stress-mitochondrial pathways. in vitro results showed that HSE blocked cell proliferation, migration, and invasion in a concentration-dependent manner and triggered apoptosis, G0/G1 phase blockade, ROS production, and MMP depolarization. In addition, Western blot results showed that HSE downregulated phosphorylated (p)-3-phosphoinositide-dependent kinase-1 (PI3K), phosphorylated (p)-AKT serine/threonine kinase 1 (AKT), phosphorylated (p)-Forkhead box O 3a (FoxO3a), anti-apoptotic proteins, proliferation-associated proteins, and cell cycle promoters, whereas the levels of proteins related to the expression of cell cycle regulators, pro-apoptotic proteins, and ER stress-mitochondrial pathway were up-regulated in BLCA cells by the intervention of HSE. PI3K agonist (YS-49) and ER stress inhibitor (4-PBA) partially or completely reversed HSE-mediated proliferation, apoptosis, and cycle blockade in BLCA cells. CONCLUSION: The anticancer effects of HSE in BLCA may be attributed to its coordination of actions, inhibiting cell proliferation, migration, and invasion, inducing apoptosis, G0/G1 phase arrest, generating reactive oxygen species, causing MMP loss, and engaging the caspase protein family. These actions are likely mediated through the PI3K/AKT/FoxO3a and ER stress-mitochondrial pathways. Thus, our findings suggest that HSE is a promising novel therapeutic candidate for the prevention and treatment of BLCA.

11.
Iran J Basic Med Sci ; 27(3): 343-351, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333748

RESUMO

Objectives: Bevacizumab is a commonly used anticancer drug in clinical practice, but it often leads to adverse reactions such as vascular endothelial damage, hypertension, arterial and venous thrombosis, and bleeding. This study investigated the protective effects of metformin against bevacizumab-induced vascular injury in a mouse model and examined the possible involvement of GDF15/PI3K/AKT/FOXO/PPARγ signaling in the effects. Materials and Methods: C57 male mice were purchased. To investigate metformin, the mice were assigned to the saline, bevacizumab (15 mg every 3 days), metformin (1200 mg/day), and bevacizumab+metformin groups. To investigate GDF15, the mice were assigned to the siNC+bevacizumab, siNC+bevacizumab+metformin, siGDF15+bevacizumab, and siGDF15+bevacizumab+metformin groups. Histological staining was used to evaluate vascular injury. Flow cytometry was used to evaluate apoptosis. ELISA was used to measure plasma endothelial injury markers and proinflammatory cytokines. qRT-PCR and western blot were used to determine the expression of GDF15 and PI3K/AKT/FOXO/PPARγ in aortic tissues. Results: Metformin alleviated bevacizumab-induced abdominal aortic injury, endothelial cell apoptosis, and systemic inflammation in mice (all P<0.05). Metformin up-regulated GDF15 expression and PI3K/AKT/FOXO/PPARγ signaling in the abdominal aorta of mice treated with bevacizumab (all P<0.05). siGDF15 abolished the vascular protective and anti-inflammatory effects of metformin (all P<0.05). siGDF15 suppressed PI3K/AKT/FOXO/PPARγ signaling in the abdominal aorta of mice treated with bevacizumab (all P<0.05). Conclusion: Metformin attenuates bevacizumab-induced vascular endothelial injury, apoptosis, and systemic inflammation by activating GDF15/PI3K/AKT/FOXO/PPARγ signaling.

12.
Chem Biol Interact ; 391: 110893, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38336255

RESUMO

Steroid-induced osteonecrosis of the femoral head (SONFH), caused by glucocorticoid (GC) administration, is known to exhibit a high incidence worldwide. Although osteoblast apoptosis has been reported as an important cytological basis of SONFH, the precise mechanism remains elusive. Echinacoside (Ech), a natural phenylethanoid glycoside, exerts multiple beneficial effects, such as facilitation of cell proliferation and anti-inflammatory and anticancer activities. Herein, we aimed to explore the regulatory mechanism underlying glucocorticoid-induced osteoblast apoptosis and determine the protective efficacy of Ech against SONFH. We comprehensively surveyed multiple public databases to identify SONFH-related genes. Using bioinformatics analysis, we identified that the PI3K/AKT/FOXO1 signaling pathway was most strongly associated with SONFH. We examined the protective effect of Ech against SONFH using in vivo and in vitro experiments. Specifically, dexamethasone (Dex) decreased p-PI3K and p-AKT levels, which were reversed following Ech addition. Validation of the PI3K inhibitor (LY294002) and molecular docking of Ech and PI3K/AKT further indicated that Ech could directly enhance PI3K/AKT activity to alleviate Dex-induced inhibition. Interestingly, Dex upregulated the expression of FOXO1, Bax, cleaved-caspase-9, and cleaved-caspase-3 and enhanced MC3T3-E1 apoptosis; application of Ech and siRNA-FOXO1 reversed these effects. In vitro, Ech decreased the number of empty osteocytic lacunae, reduced TUNEL and FOXO1 positive cells, and improved bone microarchitecture. Our results provide robust evidence that PI3K/AKT/FOXO1 plays a crucial role in the development of SONFH. Moreover, Ech may be a promising candidate drug for the treatment of SONFH.


Assuntos
Glucocorticoides , Osteonecrose , Ratos , Animais , Glucocorticoides/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Dexametasona/farmacologia , Cabeça do Fêmur/metabolismo , Simulação de Acoplamento Molecular , Glicosídeos/farmacologia , Osteonecrose/induzido quimicamente , Osteonecrose/tratamento farmacológico , Apoptose
13.
Cell Biochem Biophys ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386223

RESUMO

Muscle atrophy is a common extrapulmonary co-morbidity affecting about 20% of patients with COPD. However, the mechanism of muscle atrophy in COPD remains unclear. This study investigated the role of the ubiquitin-proteasome system (UPS) and the autophagy system in COPD muscle atrophy and its mechanism. A COPD rat model was established to evaluate the in vitro effects of the UPS and the autophagy system in muscle atrophy. In addition, the role of the UPS, autophagy systems, and the expressions of the PI3K/AKT/FOXO3a pathway were studied in the CSE-induced L6 myoblast cells. Furthermore, we evaluated the effect of FOXO3a in the CSE-induced L6 myoblast cells using siRNA-FOXO3a. The results showed that the expression of ubiquitin-related proteins and autophagy-related proteins were significantly increased in the COPD rat model and CSE-induced L6 myoblast cells. At the same time, there was a concurrent decrease in the phosphorylation protein expression of PI3K and AKT, but the transcriptional activity of FOXO3a was increased in CSE-induced L6 myoblast cells. And siRNA-FOXO3a significantly decreased the expression level of the UPS and the autophagy system in CSE-induced L6 myoblast cells. These results suggest that PI3K/AKT/FOXO3a participates in COPD muscle atrophy by regulating the UPS and the autophagy systems.

14.
J Med Food ; 27(3): 222-230, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38190487

RESUMO

Skeletal muscles are important for body movement, postural maintenance, and energy metabolism. Muscle atrophy is caused by various factors, including lack of exercise, age, genetics, and malnutrition, leading to the loss of muscle mass. The Akt/FoxO signaling pathway plays a key role in the regulation of muscle protein synthesis and degradation. Whole wheat contains functional ingredients that may indirectly contribute to muscle health and function and can help prevent or slow the progression of muscle atrophy. In this study, the protective effects of three wheat cultivars (Seodun, Ol, and Shinmichal 1) against hydrogen peroxide-induced muscle atrophy in C2C12 cells were investigated. We found that whole-wheat treatment reduced reactive oxygen species production, prevented glutathione depletion, and increased myotube diameter, thereby reducing muscle atrophy by activating myoblast differentiation. Generally, "Shinmichal 1" exhibited the highest activation of the Akt/FoxO signaling pathway. In contrast, "Seodun" showed similar or slightly higher activities than those of the H2O2-treated only group. In conclusion, whole wheat exerts a protective effect against muscle atrophy by activating the Akt/FoxO signaling pathway. This study indicates that whole wheat may help prevent muscle atrophy.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Triticum , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Triticum/metabolismo , Peróxido de Hidrogênio/efeitos adversos , Transdução de Sinais , Atrofia Muscular/etiologia , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas
15.
J Ethnopharmacol ; 324: 117756, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38218503

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Wenzhong Bushen Formula (WZBSF) is a traditional Chinese medicine empirical formula known for its effects in tonifying qi, strengthening the spleen, warming the kidneys, promoting yang, regulating blood circulation, and balancing menstruation. Clinical evidence has demonstrated its significant efficacy in treating Diminished Ovarian Reserve (DOR) by improving ovarian reserves. However, the specific pharmacological mechanisms of WZBSF remain unclear. AIM OF THE STUDY: This study aims to investigate the mechanisms by which WZBSF improves ovarian reserve decline through network pharmacology and animal experiments. METHODS AND MATERIALS: WZBSF was analyzed using a dual UPLC-MS/MS and GC-MS platform. Effective components and targets of WZBSF were obtained from the TCMSP database and standardized using UniProt. Disease targets were collected from GeneCard, OMIM, PHARMGKB, and DisGeNET databases, with cross-referencing between the two sets of targets. A PPI protein interaction network was constructed using Cytoscape3.9.1 and STRING database, followed by KEGG and GO enrichment analysis using the Metascape database. Finally, an ovarian reserve decline model was established in mice, different doses of WZBSF were administered, and experimental validation was conducted through serum hormone detection, H&E staining, immunofluorescence (IF), immunohistochemistry (IHC), and Western blot analysis (WB). RESULTS: WZBSF shares 145 common targets with ovarian reserve decline. GO enrichment analysis revealed involvement in biological processes such as response to hormone stimulation and phosphatase binding, while KEGG analysis implicated pathways including the PI3K-AKT signaling pathway and FoxO signaling pathway. In mice with ovarian reserve decline, WZBSF restored weight gain rate, increased ovarian index, normalized estrous cycles, reversed serum hormone imbalances, restored various follicle counts, and improved ovarian morphology. Additionally, WZBSF reduced p-AKT and p-FOXO3a levels, preventing excessive activation of primordial follicles and maintaining ovarian reserve. CONCLUSION: WZBSF can ameliorate cyclophosphamide and busulfan-induced ovarian reserve decline, and its mechanism may be associated with the inhibition of the PI3K/AKT/FOXO3a signaling pathway.


Assuntos
Medicamentos de Ervas Chinesas , Reserva Ovariana , Feminino , Animais , Camundongos , Farmacologia em Rede , Cromatografia Líquida , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Espectrometria de Massas em Tandem , Medicamentos de Ervas Chinesas/farmacologia , Hormônios , Simulação de Acoplamento Molecular
16.
Med Oncol ; 41(2): 44, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170382

RESUMO

Prostate cancer (PCa) is one of the most common malignant tumors that exhibit both chemoresistance and recurrence. SUV39H2 is highly expressed in many types of human tumors, but its role in the development and progression of PCa has never been clarified. The aim of this study is to elucidate the role of SUV39H2 in the development and progression of PCa, its association with the AKT/FOXO signaling pathway, and its potential implications for PCa diagnosis and treatment. SUV39H2 expression was analyzed in The Cancer Genome Atlas (TCGA) and genotype tissue expression pan-cancer data. The TCGA database was evaluated for SUV39H2 enrichment and its correlation to immune cell infiltration. SUV39H2 levels in PCa tissues and control tissues were determined in 30 patients using qPCR and IHC. Clinical relevance was assessed via The Cancer Genome Atlas (TCGA). In vitro assessments including colony formation assays, Western Blot analysis, CCK-8 assays, and flow cytometry were utilized to establish SUV39H2's contribution to PCa cell growth. The influence of SUV39H2 on PC3 and DU145 cell proliferation was assessed through a cell line-derived xenograft model. Sphere formation assays and qPCR were employed to delineate SUV39H2's role in PCa stemness and chemosensitivity. In vitro macrophage polarization assays provided insights into SUV39H2's association with M2 macrophages, while enrichment analysis shed light on its role in FOXO signaling. PCa tissues expressed higher levels of SUV39H2 than normal tissues. By knocking down SUV39H2, PCa cells were made more chemosensitive to docetaxel and cell proliferation and stemness were inhibited. Additionally, SUV39H2 knockdown significantly inhibited in vivo PCa cell growth and inhibited the polarization of macrophages. Furthermore, SUV39H2 was found to regulate AKT/FOXO signaling by increasing Akt and FOXO3a phosphorylation. Our findings highlight SUV39H2's role in PCa cell apoptosis and chemosensitivity mainly by regulating the AKT/FOXO signaling pathway and suggest that SUV39H2 could be a potential target for PCa diagnosis and treatment.


Assuntos
Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-akt , Masculino , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Apoptose , Histona Metiltransferases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Histona-Lisina N-Metiltransferase/metabolismo
17.
Mol Med Rep ; 29(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38214335

RESUMO

Subsequently to the publication of the above article, an interested reader drew to the authors' attention that the data panel for the "Huh7+BSA" experiment shown in Fig. 1D on p. 2852, showing the relative size of lipid droplets as determined in morphological studies using oil red O staining, had also appeared previously in the following article published by the same research group [Li D, Cheng M, Niu Y, Chi X, Liu X, Fan J, Fan H, Chang Y and Yang W: Identification of a novel human long non-coding RNA that regulates hepatic lipid metabolism by inhibiting SREBP-1c. Int J Biol Sci 13: 349-357, 2017]. Upon examining their original data, the authors have realized that this data panel was inadvertently selected incorrectly in Fig. 1, and the revised version of Fig. 1, containing the correct data panel for Fig. 1D, is shown on the next page. Note that this error did not significantly affect the results or the conclusions reported in this paper. All the authors agree to the publication of this Corrigendum, and are grateful to the Editor of Molecular Medicine Reports for allowing them the opportunity to correct this error. Moreover, the authors apologize to the readership for any inconvenience caused. [Molecular Medicine Reports 18: 2850-2856, 2018; DOI: 10.3892/mmr.2018.9278].

18.
J Autoimmun ; 143: 103160, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160538

RESUMO

Autoimmune uveitis (AU) is a severe disorder causing poor vision and blindness. However, the cellular dynamics and pathogenic mechanisms underlying retinal injury in uveitis remain unclear. In this study, single-cell RNA sequencing of the retina and cervical draining lymph nodes in experimental autoimmune uveitis mice was conducted to identify the cellular spatiotemporal dynamics and upregulation of the glycolysis-related gene LDHA. Suppression of LDHA can rescue the imbalance of T effector (Teff) cells/T regulator (Treg) cells under inflammation via downregulation of the glycolysis-PI3K signaling circuit and inhibition of the migration of CXCR4+ Teff cells towards retinal tissue. Furthermore, LDHA and CXCR4 are upregulated in the peripheral blood mononuclear cells of Vogt-Koyanagi-Harada patients. The LDHA inhibitor suppresses CD4+ T cell proliferation in humans. Therefore, our data indicate that the autoimmune environment of uveitis regulates Teff cell accumulation in the retina via glycolysis-associated LDHA. Modulation of this target may provide a novel therapeutic strategy for treating AU.


Assuntos
Doenças Autoimunes , Uveíte , Animais , Humanos , Camundongos , Leucócitos Mononucleares , Fosfatidilinositol 3-Quinases , Retina , Linfócitos T Reguladores
19.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1006268

RESUMO

ObjectiveTo observe the effects of the South African herb Hoodia gordonii (HG) on glucolipid metabolism in diabetic db/db mice and explore the possible mechanisms of HG on the liver of db/db mice based on the phosphoinositide-3 kinase (PI3K)/protein kinase B (Akt)/factor forkhead protein O1 (FoxO1) signaling pathway. MethodA total of 30 db/db mice were randomly divided into five groups according to fasting blood glucose: model group, metformin group (0.195 g·kg-1), and low dose (0.39 g·kg-1), medium dose (0.78 g·kg-1), and high dose (1.56 g·kg-1) HG groups, with six m/m mice in each group, and another six m/m mice were set as normal group. The mice in the normal and model groups were given saline of 9 mL·kg-1 by gavage. Body weight, water intake, and fasting blood glucose of the mice in each group were measured weekly. After six weeks of continuous administration, serum insulin (FINS), low-density lipoprotein cholesterol (LDL), total cholesterol (TC), triglyceride (TG), alanine aminotransferase (ALT), aspartate aminotransferase (AST), urea, and creatinine (CREA) were measured, and liver sections were embedded and stained with hematoxylin-eosin (HE), periodic acid-Schiff (PAS), and oil red O. Protein expression of PI3K p85, p-Akt, and p-FoxO1 in liver was detected by immunohistochemistry. The mRNA expression of PI3K, Akt, and FoxO1 in liver tissue was detected by real-time polymerase chain reaction (Real-time PCR). ResultAfter six weeks of administration intervention, it was found that fasting blood glucose was significantly downregulated in mice in the three HG groups (P<0.05). The level of islet resistance index was significantly reduced in both the low and medium dose HG groups (P<0.05). The expression levels of TC, TG, and LDL were reduced in all HG groups (P<0.05, P<0.01). Pathologically, HG could alleviate hepatocyte steatosis, reduce the volume and content of lipid droplets in liver, and increase the distribution of glycogen granules in liver to some extent in mice. Immunohistochemical assays revealed that PI3K p85 protein expression was significantly increased in the low, medium, and high dose HG groups compared with the model group (P<0.01). p-Akt protein expression was significantly increased in the medium and high dose HG groups (P<0.05, P<0.01). p-FoxO1 protein expression was significantly increased in the low, medium, and high dose HG groups (P<0.05, P<0.01). Compared with the model group, PI3K mRNA was increased in low dose, medium dose, and high dose HG groups (P<0.05), and Akt mRNA was increased in high dose HG group (P<0.05). FoxO1 mRNA was decreased in low dose, medium dose, and high dose HG groups (P<0.05). ConclusionHG can ameliorate the disorder of glucolipid metabolism in db/db mice, which may be related to its activation of the hepatic PI3K/Akt/FoxO1 signaling pathway.

20.
Protein Pept Lett ; 30(12): 1009-1019, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37953618

RESUMO

BACKGROUND: Islet ß-cell dedifferentiation may be the main cause of reduced insulin secretion. Angiotensin-(1-7) [Ang-(1-7)] can attenuate high glucose-induced apoptosis and dedifferentiation of pancreatic ß-cell, but the specific signal transduction pathway and mechanism are not yet clear. OBJECTIVES: This study aimed to investigate the effects of Ang-(1-7) on high glucose-induced islet ß-cell dedifferentiation by activating the phosphatidylinositol-3-kinase/Protein kinase B/ Forkhead box transcription factor O1 (PI3K/Akt/FoxO1) signaling pathway. METHODS: The mouse islet ß-cell line MIN6 cells were passaged and cultured and randomly divided into five groups: control (Con) group, high glucose (HG) group, HG with Ang-(1-7) group, HG with Ang-(1-7) and specific MasR antagonist A-779 group, and HG with Ang-(1-7) and PI3K inhibitor LY294002 group. After 48 hours, glucose-stimulated insulin secretion (GSIS) was detected by Enzyme-Linked Immunosorbent Assay (ELISA). The mRNA and protein expression levels of ß-cell-specific factors (Pancreatic duodenal homeobox-1 (Pdx1), v-maf musculoaponeurotic fibrosarcoma oncogene homolog A(MafA)) and endocrine progenitor cell-specific factors (Octamer binding transcription factor 4(Oct4), Nanog) were measured by Real Time-PCR and Western blot. The factors of protein expression levels of PI3K/Akt/FoxO1 signaling pathway (Akt, p-Akt, Fox- O1, p-FoxO1) were determined by Western blot. RESULTS: We observed for the first time that high glucotoxicity can induce dedifferentiation of pancreatic islet ß-cell, causing a decrease in insulin secretion levels and expression of Pdx1, MafA, p-- FoxO1, and p-Akt and an increase in expression of Oct4 and Nanog. After Ang-(1-7) intervention, insulin secretion levels and expression of Pdx1, MafA, p-FoxO1 and p-Akt were increased, and the levels of Oct4 and Nanog were reduced. However, A-779 and LY294002 could reverse this effect. During these processes, the total Akt and total FoxO1 expression did not change significantly. CONCLUSION: Ang-(1-7) may prevent high glucose-induced pathological dedifferentiation of pancreatic ß-cell by activating the PI3K/Akt/FoxO1 signaling pathway.


Assuntos
Ilhotas Pancreáticas , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/genética , Fosfatidilinositol 3-Quinases/metabolismo , Desdiferenciação Celular , Transativadores/genética , Transativadores/metabolismo , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Glucose/farmacologia , Glucose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...